tentukandaerah penyelesaian yang memenuhi sistem pertidak samaan berikut .. tentukan daerah penyelesaian yang memenuhi sistem pertidak samaan berikut .. rikodaniel60rikodaniel60. Jawaban: Himpunan penyelesaian dari pertidaksamaan linear : 4x + 2y ≤ 60 . 3x + 5y ≤ 75 . x ≥ 0 . y ≥ 0 . Penyelesaian Soal : Langkah 1 : Menggambar grafik 4x
Gambar daerah layak memuat himpunan penyelesaian yang memenuhi suatu pertidaksamaan linear. Biasanya, gambar daerah layak sering dijumpai pada masalah atau bahasan program linear. Sistem pertidaksamaan yang membatasi gambar daerah layak adalah merupakan fungsi kendala pada masalah program linear. Cara membuat gambar daerah layak sebagai himpunan penyelesaian pertidaksamaan linear dapat dilakukan dengan menentukan batas wilayah dan menguji daerah. Bagaimana cara membuat gambar daerah layak? Bagaimana cara menentukan daerah layak yang dibatasi oleh suatu sistem pertidaksamaan linear? Sobat idschool dapat mencari tahu jawabannya melalui ulasan di bawah. Table of Contents Bentuk Gambar Daerah Layak Cara Menentukan Gambar Daerah Layak Contoh Soal dan Pembahasan Contoh 1 – Cara Menentukan Gambar Daerah Layak yang Sesuai dengan Sistem Pertidaksamaan Contoh 2 – Cara Menentukan Gambar Daerah Layak yang Sesuai dengan Sistem Pertidaksamaan Contoh 3 – Menentukan Gambar Daerah Layak yang Sesuai dengan Sistem Pertidaksamaan Contoh 4 – Menentukan Gambar Daerah Layak yang Sesuai dengan Sistem Pertidaksamaan Daerah layak biasanya digambarkan melalui bagian wilayah yang diarsir. Untuk mendapatkan gambar daerah layak, sobat idschool perlu menggambarkan batas-batas garisnya terlebih dahulu. Setelah mendapatkan kedua garis tersebut selanjutnya sobat idschool akan mendapatkan daerah yang terbagi oleh garis. Daerah yang terbagi oleh garis dapat menjadi daerah penyelesaian atau bukan daerah penyelesaian. Sehingga sobat idschool perlu menguji daerah-daerah tersebut dengan mengambil satu titik sampel di setiap daerah yang terbagi oleh garis. Dengan melakukan uji titik ini, sobat idschool dapat mengetahui mana daerah yang merupakan himpunan penyelesaian dan mana daerah yang bukan merupakan himpunan penyelesaian. Cara melakukan uji titik dilakukan dengan susbtitusi nilai variabel x dan y pada pertidaksamaan. Hasil dari perhitungan akan menunjukkan apakah memenuhi atau tidak memenuhi pertidaksamaan. Baca Juga GarisLurus pada Persamaan Linear Cara Menentukan Gambar Daerah Layak Sebagai contoh, perhatikan bagaimana cara menentukan daerah layak dari suatu pertidaksamaan pada penyelesaian soal sederhana berikut. Soal Tentukan daerah layak pada pertidaksamaan x + y ≤ 5!Langkah pertama adalah menggambar garis x + y = 5 kemudian melakukan uji titik pada daerah yang terbagi oleh garis tersebut. Jika terdapat lebih dari satu pertidaksamaan maka daerah layak yang memenuhi adalah daerah yang merupakan irisan dari beberapa pertidaksamaan. Atau dapat dikatakan bahwa daerah layak yang juga dimiliki oleh setiap pertidaksamaan. Baca Juga 3 Langkah dalam Cara Menyelesaikan Permasalahan Program Linear Contoh Soal dan Pembahasan Beberapa contoh soal di bawah dapat sobat idschool gunakan untuk menambah pemahaman bahasan di atas. Setiap contoh soal yang diberikan dilengkapi dengan pembahasannya. Sobat idschool dapat menggunakan pembahasan tersebut sebagai tolak ukur keberhasilan mengerjakan soal. Selamat Berlatih! Contoh 1 – Cara Menentukan Gambar Daerah Layak yang Sesuai dengan Sistem Pertidaksamaan Daerah yang diarsir pada gambar di atas adalah daerah penyelesaian dari pertidaksamaan ….A. 6x + y ≤ 12; 5x + 4y ≥ 20; x ≥ 0; y ≥ 0 B. 6x + y ≥ 12; 5x + 4y ≥ 20; x ≥ 0; y ≥ 0 C. 6x + y ≥ 12; 5x + 4y ≤ 20; x ≥ 0; y ≥ 0 D. x + 6y ≤ 12; 4x + 5y ≥ 20; x ≥ 0; y ≥ 0 E. x + 6y ≥ 12; 4x + 5y ≤ 12; x ≥ 0; y ≥ 0 PembahasanLangkah pertama untuk menentukan sistem pertidaksamaan yang sesuai pada gambar daerah layak yang diberikan pada soal adalah mengetahi persamaan garis yang membatasi daerah layak. Dari gambar daerah layak yang diberikan berada pada kuadran pertama, di mana nilai x dan y pada selalui bernilai positif yang dapat dinyatakan dalam x ≥ 0 dan y ≥ 0. Daerah layak yang diberikan dibatasi oleh dua buah garis yang diketahui setiap garis memotong sumbu x dan sumbu persamaan garis yang melalui titik 0, 5 dan 4,0 Karena daerah layak berada di atas garis 5x + 4y = 20 maka pertidaksamaan pertama adalah 5x + 4y ≥ persamaan garis yang melalui titik 0, 12 dan 2, 0 Karena daerah layak berada di atas garis 6x + y = 12 maka pertidaksamaan pertama adalah 6x + y ≤ 12. Jadi, daerah yang diarsir pada gambar di atas adalah daerah penyelesaian dari pertidaksamaan adalah 6x + y ≤ 12; 5x + 4y ≥ 20; x ≥ 20; y ≥ A Baca Juga Operasi Hitung Bilangan Berpangkat Pecahan Contoh 2 – Cara Menentukan Gambar Daerah Layak yang Sesuai dengan Sistem Pertidaksamaan PembahasanLangkah pertama adalah menentukan batas daerah layak dari dua pertidaksamaan yang diberikan yaitu 3x + 4y ≤ 96 dan x + y ≤ 30. Caranya adalah dengan mengambil harga nol dari kedua pertidaksamaan tersebut sehingga diperoleh dua persamaan linear. Dari sertiap persamaan linear dapat dibuat sebuah garis lurus yang akan membagi daerah menjadi bagai atas/bawah atau kanan/kiri. Lakukan uji titik di setiap daerah yang dipisahkan sehingga dapat diketahui mana daerah yang menjadi himpunan penyelesaian. Syarat x ≥ 0 dan y ≥ 0 menunjukkan bahwa daerah penyelesaian berada di kuadran pertama, sehingga hanya perlu fokus pada bagian tersebut. Proses pengerjaannya dilakukan seperti pada cara berikut. Himpunan penyelesaian untuk sistem pertidaksamaan 3x + 4y ≤ 96; x + y ≤ 30; x ≥ 0; y ≥ 0 merupakan irisan dari keempat himpunan penyelesaian keempat pertidaksamaan. Sehingga, irisan atau himpunan penyelesaian dari sistem pertidaksamaan menghasilkan gambar daerah daerah layak seperti berikut. Jadi, daerah yang memenuhi sistem pertidaksamaan linear 3x + 4y ≤ 96; x + y ≤ 30; x ≥ 0; y ≥ 0 adalah D Contoh 3 – Menentukan Gambar Daerah Layak yang Sesuai dengan Sistem Pertidaksamaan Daerah berarsir yang menunjukkan himpunan penyelesaian dari sistem pertidaksamaan 3x + 5y ≥ 15; 2x + 5y ≥ 10; x ≥ 0; dan y ≥ 0 adalah .… PembahasanCara mendapatkan gambar yang sesuai dengan daerah layak dilakukan dengan menggambar garis lurus yang sesuai pada sistem pertidaksamaan. Selanjutnya adalah menentukan daerah layak yang sesuai dengan sitem pertidaksamaan dengan melakukan uji titik. Pada sistem pertidaksamaan yang diberikan terdapat pertidaksamaan x ≥ 0 dan y ≥ 0 yang menunjukkan bahwa daerah layak berada di kuadran pertama. Sehingga sobat idschool hanya perlu memperhatikan daerah pada kuadran pertama. Cara menentukan daerah yang layak sesuai dengan pertidaksamaan 3x + 5y ≥ 15; 2x + 5y ≥ 10; x ≥ 0; dan y ≥ 0 diberikan seperti pada penyelesaian di bawah. Daerah layak yang memenuhi pertidaksamaan 3x + 5y ≥ 15 Daerah layak yang memenuhi pertidaksamaan 2x + 5y ≥ 10 Gabungan dari hasil dua himpunan penyelesaian sesuai dengan irisan himpunan penyelesaian seperti pada gambar daerah layak berikut. Jadi, daerah berarsir yang menunjukkan himpunan penyelesaian dari sistem pertidaksamaan 3x + 5y ≥ 15; 2x + 5y ≥ 10; x ≥ 0; dan y ≥ 0 terdapat di gambar daerah layak pada pilihan E Contoh 4 – Menentukan Gambar Daerah Layak yang Sesuai dengan Sistem Pertidaksamaan Sistem pertidaksamaan linear yang sesuai dengan daerah penyelesaian diarsir adalah ….A. 3x + 5y ≤ 15, 4x + 7y ≥ 28, x ≥ 0, y ≥ 0B. 3x + 5y ≥ 15, 4x + 7y ≤ 28, x ≥ 0, y ≥ 0C. 5x + 3y ≥ 15, 4x + 7y ≥ 28, x ≥ 0, y ≥ 0D. 5x + 3y ≤ 15, 4x + 7y ≤ 28, x ≥ 0, y ≥ 0E. 5x + 3y ≤ 15, 4x + 7y ≥ 28, x ≥ 0, y ≥ 0 PembahasanLangkah pertama adalah menentukan persamaan garis yang menjadi pembatas dari daerah layak yang diberikan. Dearah layak yang diberikan pada soal berada di kuadran pertama yang artinya nilai x dan y selalu bernilai positif sehingga dapat diperoleh dua pertidaksamaan x ≥ 0 dan y ≥ 0. Selanjutnya ada dua buah garis yang membatasi daerah layak. Sebuah garis melalui titik 3, 0 dan 0, 5, sedangkan garis lainnya melalui titik 7, 0 dan 0, 4. Cara menentukan persamaan garis dan sistem pertidaksamaan yang sesuai dengan gambar daerah layak yang diberikan pada soal diselesaikan seperti pada penyelesaian berikut. Jadi, sistem pertidaksamaan linear yang sesuai dengan daerah penyelesaian diarsir adalah 5x + 3y ≤ 15, 4x + 7y ≥ 28, x ≥ 0, y ≥ E Demikianlah tadi ulasan cara menentukan sistem pertidaksamaan yang memenuhi daerah layak. Terima kasih sudah mengunjungi idschooldotnet, semoga bermanfaat! Baca Juga Himpunan Penyelesaian pada Pertidaksamaan Logaritma
3 Sistem Pertidaksamaan Linear Dua Variabel. Sistem pertidaksamaan linear dua variabel atau SPtLDV adalah gabungan dari dua atau lebih pertidaksamaan linear dua variabel. Langkah sederhana untuk menyelesaikan SPtLDV, yaitu. a. Cari titik x saat y = 0, begitu juga sebaliknya b. Gambarlah grafik sesuai dengan titik x dan y c. Arsir daerah yang
Halo Sobat Zenius! Ketemu lagi sama gue. Di artikel kali ini gue akan fokus membahas mengenai materi sistem pertidaksamaan linear dua variabel. Nah, pada materi sebelumnya, kita sudah belajar mengenai sistem persamaan linear dua variabel. Elo masih ingat gak sama materi tersebut? Hayoo.. coba ingat-ingat lagi materinya, elo bisa review materinya di video belajar Zenius Sistem Persamaan Linear Dua Variabel dan Solusinya. Dalam persamaan linear dua variabel, elo akan menemukan bentuk ax+by=c, dengan a adalah koefisien dari variabel x, y adalah koefisien dari variabel y, dan c adalah konstanta. Kenapa dikatakan sebagai persamaan linear? Karena lambangnya adalah sama dengan =. Wah, berarti pertidaksamaan itu bentuknya bukan sama dengan ya? Iya, dari namanya aja “pertidaksamaan”. Berarti notasi yang digunakan selain sama dengan, seperti ≤ kurang dari sama dengan, ≥ lebih dari sama dengan, ≠ tidak sama dengan, lebih dari. Selengkapnya langsung kita bahas di bawah ini. Baca Juga Persamaan dan Pertidaksamaan Nilai Mutlak – Materi Matematika Kelas 10 Pengertian Sistem Pertidaksamaan Linear Dua VariabelDaerah Penyelesaian Pertidaksamaan Linear Dua VariabelContoh Soal SPLDV Salah satu kegunaan SPLDV dalam kehidupan sehari-hari adalah membuat prediksi Matematika dok Freepik Untuk mengetahui apa itu sistem pertidaksamaan linear dua variabel SPLDV, sebenarnya mudah ya, kita pahami saja dari istilahnya. Bisa dikatakan, SPLDV adalah pertidaksamaan yang terdiri dari dua variabel x dan y. Berikut adalah ciri-ciri SPLDV Dua variabel → ada dua variabel, yaitu x dan dari pertidaksamaan → selain sama dengan =, berarti ≠, >, c Tapi, balik lagi nih ke istilahnya, yaitu Sistem Pertidaksamaan Linear Dua Variabel. Ada kata sistem yang berarti gak hanya satu pertidaksamaan linear, melainkan gabungan. Contohnya x + 2y ≥ 5 1 dan 3x + y ≥ 6 2. Nah, jadi ke depannya lo akan menemukan SPLDV gak hanya satu persamaan, melainkan bisa dua atau tiga persamaan. Lebih lengkapnya nanti kita bahas di contoh soal ya. Di bagian selanjutnya dalam artikel Matpel Matematika ini, gue akan membahas lebih dalam mengenai cara menentukan daerah penyelesaian sistem pertidaksamaan linear dua variabel. Tapi sebelum lompat ke bagian itu. Gue mau ngasih info penting nih. Kalo elo mau tau gimana caranya melakukan persiapan menghadapi UTBK SBMPTN yang baik dan benar, elo bisa download aplikasi Zenius sebagai persiapan UTBK, lho! Sebab, di sana ada banyak fitur dan materi lengkap yang bisa elo gunakan buat belajar UTBK. Langsung klik banner di bawah ini, ya, buat download aplikasinya! Download Aplikasi Zenius Tingkatin hasil belajar lewat kumpulan video materi dan ribuan contoh soal di Zenius. Maksimaln persiapanmu sekarang juga! Daerah Penyelesaian Pertidaksamaan Linear Dua Variabel Oke, selanjutnya di bagian ini, gue akan menjelaskan cara menentukan daerah penyelesaian sistem pertidaksamaan linear dua variabel. Nah, supaya elo makin paham, kita langsung masuk ke contoh soalnya aja ya. Misalnya ada soal contoh soal pertidaksamaan linear dua variabel kelas 10 seperti ini Dari pertidaksamaan 4x + 3y – 12 ≥ 0, tentukan daerah penyelesaiannya! Langkah-langkah untuk menentukan daerah penyelesaian adalah sebagai berikut Pindahkan variabel ke ruas kiri dan konstanta di ruas + 3y ≥ 12Ubah tanda pertidaksamaan menjadi sama + 3y = 12 Tentukan titik poinnya, kalau akan menggunakan sumbu-x berarti y=0, sebaliknya kalau menggunakan sumbu-y berarti x=0. Gambar titik potongnya. Lakukan uji titik untuk mendapatkan daerah penyelesaiannya. Kita ambil titik yang berada di dalam garis kiri garis.Misalnya titik 2,0. Sekarang kita substitusi ke dalam persamaan 4x + 3y ≥ 12 menjadi 42 + 30 ≥ 12, hasilnya 8 ≥ 12. Kira-kira benar gak kalau 8 lebih besar sama dengan 12? Salah ya, berarti daerah penyelesaiannya ada di kanan garis atau di luar garis. Dari situ sudah paham ya, kalau hasil uji titiknya salah, berarti daerahnya ada di luar garis kanan, sedangkan hasil uji titiknya benar, maka daerahnya ada di dalam garis kiri. Lalu, apa sih perbedaan antara notasi ≥ dan > atau ≤ dan dan kurang dari > Visualisasi Daerah Penyelesaian Sistem Pertidaksamaan Linear Dua Variabel di website atau aplikasi Zenius secara GRATIS. Tapi, jangan lupa untuk log in atau sign in dengan akun Zenius dulu ya Sobat dengan cara klik gambar di bawah ini! Baca Juga Artikel Lainnya Rumus-Rumus Trigonometri – Materi Matematika Kelas 10 Konsep, Grafik, & Rumus Fungsi Kuadrat Rumus Fungsi Linear Contoh dan Pembahasan Originally published November 22, 2021Updated by Sabrina Mulia Rhamadanty
Grafikpertidaksamaan linear satu variable. dan dua variable adalah himpunan semua titik (x,y) pada sistem koordinat Kartesius yang. memenuhi sistem tersebut. Grafik ini biasanya digambarkan sebagai suatu daerah yang diarsir. pada sistem koordinat yang dinamakan daerah himpunan penyelesaian. Pada gambar.
Kalau kamu tertarik untuk mempelajari tentang seluk beluk sistem pertidaksamaan dalam matematika, simak video pembahasannya di sini. Kami juga telah menyiapkan kuis berupa latihan soal dengan tingkatan yang berbeda-beda agar kamu bisa mempraktikkan materi yang telah sini, kamu akan belajar tentang Sistem Pertidaksamaan melalui video yang dibawakan oleh Bapak Anton Wardaya. Kamu akan diajak untuk memahami materi hingga metode menyelesaikan soal. Selain itu, kamu juga akan mendapatkan latihan soal interaktif dalam 3 tingkat kesulitan mudah, sedang, sukar. Maka dari itu, kamu bisa langsung mempraktikkan materi yang didapatkan. Sekarang, kamu bisa mulai belajar dengan 4 video dan 3 set latihan soal yang ada di halaman ini. Apabila materi ini berguna, bagikan ke teman atau rekan kamu supaya mereka juga mendapatkan manfaatnya. Kamu dapat download modul & contoh soal serta kumpulan latihan soal lengkap dalam bentuk pdf pada list dibawah ini Kumpulan Soal Mudah, Sedang & Sukar
LKPDI. Sistem Pertidaksamaan Linear Dua Variabel (SPLDV) (Lampiran I) Pedoman Penskoran Penilaian Pembelajaran (Lampiran 2) 9 Juli 2022 n Matematika, tvjèilgetahui, Arsirlah daerah yang tidak memenuhi, sehingga daerah himpunan penyelesaiannya adalah daerah yang bersih (tidak diarsir). Jawaban: a. Mentukan daetah penyolesaian 5x Gy > 30
MatematikaALJABAR Kelas 11 SMAProgram LinearSistem Pertidaksamaan Linear Dua VariabelDaerah yang memenuhi sistem pertidaksamaan linear 3x+4y=0, y>=0 adalah... 40 30 20 III 10 IV 10 20 30 40 II 50Sistem Pertidaksamaan Linear Dua VariabelProgram LinearALJABARMatematikaRekomendasi video solusi lainnya0124Pedagang teh mempunyai lemari yang hanya cukup ditempati ...0438Tentukan sistem pertidaksamaan dari himpunan penyelesaian...0404Tentukan sistem pertidaksamaan linear untuk daerah yang d...0243Perhatikan daerah penyelesaian dari suatu sistem pertidak...Teks videoLebih besar sama dengan besar dari tandanya besar sama dengan arsir akhirnya di makanan yang memenuhi standar tandanya terbalik sama dengan dirinya. Hal ini berarti 4 y = 30 x + 30 = 30. Berarti kita lihat yang darinya ini adalah y = 33 Xini berarti untuk ini adalah yang satu tandanya lebih kecil sama dengan x lebih kecil sama dengan x lebih kecil berarti karena di sini ada 1 x = 3 itu Kak memang ada 1 ya nanti kita kerjasama dengan juga berarti44 sampai jumpa di pertanyaan berikutnya
Nyatakanpertidaksamaan-pertidaksamaan yang memenuhi setiap daerah yang memenuhi. i ii 7. Seorang atlet diwajibkan makan dua jenis tablet setiap hari. Tablet pertama mengandung 5 unit vitamin A dan 3 unit vitamin B, sedangkan tablet kedua mengandung 10 unit vitamin A dan 1 unit vitamin B. Dalam satu hari, atlet itu memerlukan 20 unit vitamin A
Daerah bersih dalam pertidaksamaan linear dua variabel. Foto UnsplashIstilah daerah bersih dan garis selidik sering dijumpai di beberapa soal matematika. Biasanya soal ini dipelajari ketika memasuki SMA/SMK di bangku kelas lanjut, materi daerah bersih dan garis selidik ada di pelajaran program linear. Mengutip buku Matematika Kelas XI oleh Agung Lukito, dkk, daerah bersih merupakan daerah penyelesaian pertidaksamaan atau sistem pertidaksamaan yang lainnya, daerah bersih adalah daerah yang memenuhi suatu pertidaksamaan. Artinya, semua titik x,y yang memenuhi suatu pertidaksamaan linear atau suatu sistem pertidaksamaan bersih sendiri sering disebut juga dengan daerah himpunan penyelesaian. Untuk mengetahui lebih lanjut contoh soal dari daerah bersih, simak terlebih dahulu apa yang dimaksud dengan Pertidaksamaan Linear Dua VarieabelMengenal pertidaksamaan linear dua variabel. Foto UnsplashDaerah bersih memiliki keterkaitan satu sama lain dengan pertidaksamaan linear dua variabel. Masih mengutip sumber yang sama, pertidaksamaan linear dua variabel adalah kalimat terbuka matematika yang memuat dua variabel dengan masing-masing variabel berderajat satu dan dihubungkan dengan tanda apa perbedaan dari persamaan dan juga pertidaksamaan? Mengutip buku Mudah dan Aktif Belajar Matematika yang disusun oleh Tri Dewi Listya, persamaan hasilnya berupa grafik, sedangkan pertidaksamaan hasilnya berupa daerah Daerah Himpunan Penyelesaian DHP Sistem PertidaksamaanSeperti yang telah disebutkan sebelumnya, daerah bersih merupakan daerah himpunan penyelesaian atau DHP. Tentunya ada beberapa langkah untuk menentukan DHP. Untuk mengutip buku SPM Matematika IPS SMA Kelas X, XI, XII yang diterbitkan oleh Gramedia Widiasarana Indonesia, berikut beberapa langkah yang perlu untuk diperhatikan, yakniGambar masing-masing grafik dari pertidaksamaan, jangan lupa untuk menandai DHP nya tersebutTandai DHP dengan dua cara, yakni DHP ditandai dengan daerah arsiran dan DHP ditandai daerah yang bersihDaerah arsir artinya pelajar mengarsir daerah yang benar dan cari daerah yang paling banyak terkena arsiran dan itulah DHP bersih artinya daerah arsir yang salah dan setelah semua peridaksamaan diselesaikan, kemudian cari daerah yang bersih dan itulah yang disebut Soal Daerah Himpunan Penyelesaian DHP Sistem PertidaksamaanMengutip dari buku Matematika yang diterbitkan oleh PT Grafindo Media Pratama, berikut adalah contoh dari soal daerah himpunan penyelesaian sistem daerah himpunan penyelesaian sistem pertidaksamaan di bawah ini, yakniDengan x dan y ∈ R, tentukanTitik potong antara garis x + 2y = 8 dan garis 2x + y = 10Titik verteks dari himpunan penyelesaian sistem pertidaksamaan tersebutDaerah himpunan penyelesaian sistem pertidaksamaan linear tersebut, yakniHasil dari daerah himpunan penyelesaian sistem pertidaksamaan linear atau daerah bersih. Foto buku Matematika diterbitkan oleh PT. Grafindo Media PratamaLalu, substitusikan y = 2 ke x + 2y = 8, sehingga di dapatkanJadi, titik potongnya adalah 4,2Sedangkan titik verteksnya adalah A 8,0, B 4,2, dan C 0,10
Mengarsirdaerah penyelesaian yang memenuhi pertidaksamaan. Gambar 02. Daerah Penyelesaian pertidaksamaan 2x + 3y = 6 b. ≤ 2− t −8 1. Ubahlah tanda ketidaksamaan dari pertidaksamaan menjadi tanda sama dengan (=), sehingga diperoleh persamaan kuadrat dua variabel. 2.
Sistempertidaksamaan linear: x ≥ 0 y ≥ 0 x + y ≤ 7 x + 3y ≤ 15. Cari tahu daerah yang memenuhi sistem pertidaksamaan linear di atas melalui beberapa langkah penyelesaian masalah program linear matematika di bawah. Daerah yang memenuhi pertidaksamaan x + y ≤ 7.
2 Daerah Penyelesaian Sistem Pertidaksamaan Linear. Himpunan penyelesaian sistem pertidaksamaan linear 2 (dua) peubah adalah himpunan titik - titik pasangan berurut (x, y) dalam bidang kartesius yang bisa memenuhi seluruh pertidaksamaan linear dalam sistem tersebut.
Daerahyang memenuhi sistem pertidaksamaan linear 3x + 4y ≤ 96; x + y ≤ 30; x ≥ 0; y ≥ 0 adalah . Kedua pertidaksamaan di atas bertanda "≤" sehingga dapat dipastikan daerah pertidaksamaan keduanya berada di bawah garis. Sementara itu, sistem pertidaksamaan tersebut berada di kuadran pertama (x ≥ 0, y ≥ 0). Jadi, daerah yang
57yc. k8cuj6d7mc.pages.dev/923k8cuj6d7mc.pages.dev/380k8cuj6d7mc.pages.dev/53k8cuj6d7mc.pages.dev/291k8cuj6d7mc.pages.dev/218k8cuj6d7mc.pages.dev/509k8cuj6d7mc.pages.dev/951k8cuj6d7mc.pages.dev/229k8cuj6d7mc.pages.dev/723k8cuj6d7mc.pages.dev/736k8cuj6d7mc.pages.dev/513k8cuj6d7mc.pages.dev/402k8cuj6d7mc.pages.dev/694k8cuj6d7mc.pages.dev/731k8cuj6d7mc.pages.dev/761
daerah yang memenuhi sistem pertidaksamaan linear